- Apakah Carta Smith?
- Jenis Carta Smith
- Asas Carta Smith
- Komponen Carta Smith
- Carta Impedans Smith
- Carta Kemasukan Smith
- Aplikasi Smith Charts
- Cara menggunakan Carta Smith untuk pencocokan Impedansi
Kejuruteraan RF adalah salah satu bahagian Kejuruteraan Elektrik yang paling menarik dan mencabar kerana kerumitan komputasi tugas mimpi buruknya yang tinggi seperti pemadanan impedans blok yang saling berkaitan, yang berkaitan dengan pelaksanaan praktikal penyelesaian RF. Di zaman sekarang dengan pelbagai alat perisian, perkara menjadi lebih mudah tetapi jika anda kembali ke zaman sebelum komputer menjadi kuat, anda akan memahami betapa sukarnya perkara itu. Untuk tutorial hari ini, kita akan melihat salah satu alat yang dikembangkan ketika itu dan masih digunakan oleh jurutera untuk reka bentuk RF, lihatlah The Smith Chart. Kami akan mengkaji jenis carta smith, pembinaannya dan bagaimana memahami data yang dimilikinya.
Apakah Carta Smith?
The Chart Chart, dinamai Penemu Phillip Smith, yang dikembangkan pada tahun 1940-an, pada dasarnya adalah plot polar dari pekali pantulan kompleks untuk impedans sewenang-wenangnya.
Pada awalnya dikembangkan untuk digunakan untuk menyelesaikan masalah matematik yang rumit di sekitar saluran transmisi dan rangkaian yang sepadan yang kini telah digantikan oleh perisian komputer. Walau bagaimanapun, kaedah Smith charts menampilkan data telah berjaya mengekalkan keutamaannya selama bertahun-tahun dan tetap menjadi kaedah pilihan untuk memaparkan bagaimana parameter RF berkelakuan pada satu atau lebih frekuensi dengan alternatifnya menyusun maklumat.
Carta Smith boleh digunakan untuk memaparkan beberapa parameter termasuk; impedans, kemasukan, pekali pantulan, parameter hamburan, lingkaran angka kebisingan, kontur kenaikan berterusan dan kawasan untuk kestabilan tanpa syarat, dan analisis getaran mekanikal, semuanya pada masa yang sama. Hasilnya, kebanyakan Perisian Analisis RF dan alat pengukur impedans sederhana merangkumi carta smith dalam pilihan paparan yang menjadikannya topik penting bagi Jurutera RF.
Jenis Carta Smith
Carta Smith diplotkan pada satah pekali pantulan kompleks dalam dua dimensi dan diskalakan dalam impedans dinormalisasi (yang paling biasa), kemasukan dinormalisasi atau kedua-duanya, menggunakan warna yang berbeza untuk membezakan antara mereka dan berfungsi sebagai kaedah untuk mengkategorikannya menjadi pelbagai jenis. Berdasarkan skala ini, carta smith dapat dikategorikan kepada tiga jenis yang berbeza;
- Carta Impedansi Smith (Carta Z)
- Carta Penerimaan Smith (YCharts)
- Carta Imitansi Smith. (Carta YZ)
Walaupun carta impedans smith adalah yang paling popular dan yang lain jarang mendapat sebutan, mereka semua mempunyai "kuasa besar" mereka dan sangat berguna apabila digunakan secara bergantian. Untuk mengatasi mereka satu demi satu;
1. Carta Impedansi Smith
Carta Impedance smith biasanya disebut sebagai carta smith biasa kerana ia berkaitan dengan impedans dan berfungsi dengan baik dengan muatan yang terdiri daripada komponen siri, yang biasanya merupakan elemen utama dalam pencocokan impedans dan tugas kejuruteraan RF lain yang berkaitan. Mereka adalah yang paling popular, dengan semua rujukan ke carta smith biasanya menunjukkan kepada mereka dan yang lain dianggap sebagai derivatif. Gambar di bawah menunjukkan carta impedans smith.
Tumpuan artikel hari ini akan diberikan kepada mereka sehingga lebih banyak perincian akan diberikan semasa artikel itu diteruskan.
2. Carta Kemasukan Smith
Carta Impedansi sangat bagus ketika menangani beban secara bersiri kerana yang perlu anda lakukan hanyalah menambahkan impedans, tetapi matematik menjadi sangat rumit ketika bekerja dengan komponen selari (induktor selari, kapasitor atau saluran penghantaran shunt). Untuk membolehkan kesederhanaan yang sama, carta penerimaan dibuat. Dari kelas elektrik asas, anda akan ingat bahawa kemasukan adalah kebalikan dari impedans seperti itu, carta kemasukan masuk akal untuk keadaan selari yang kompleks kerana yang perlu anda lakukan adalah memeriksa kemasukan antena dan bukannya impedans dan hanya menambah mereka naik. Persamaan untuk mewujudkan hubungan antara kemasukan dan impedans ditunjukkan di bawah.
Y L = 1 / Z L = C + iS…… (1)
Di mana YL adalah kemasukan beban, ZL adalah impedans, C adalah bahagian sebenar kemasukan yang dikenali sebagai Conductance, dan S adalah bahagian khayalan yang dikenali sebagai Susceptance. Sesuai dengan hubungan mereka yang dijelaskan oleh hubungan di atas, carta kemasukan smith mempunyai orientasi songsang ke carta Impedance smith.
Gambar di bawah menunjukkan Smith Smith masuk.
3. Carta Imitansi Smith
Kerumitan carta smith meningkat di bawah senarai. Walaupun impedans "biasa" Smith Chart sangat berguna ketika bekerja dengan komponen siri dan penerimaan Smith Chart sangat bagus untuk komponen selari, kesukaran yang unik diperkenalkan ketika kedua-dua siri dan komponen selari terlibat dalam penyediaan. Untuk menyelesaikan ini, carta imitansi smith digunakan. Ini adalah penyelesaian yang benar-benar berkesan untuk masalah ini kerana ia dibentuk dengan meletakkan kedua-dua carta Impedance dan Admithance smith satu sama lain. Gambar di bawah menunjukkan Carta Immittance Smith khas.
Ia sama bermanfaatnya dengan menggabungkan kemampuan carta kemasukan dan impedans smith. Dalam aktiviti pencocokan Impedansi, ia membantu mengenal pasti bagaimana komponen selari atau siri mempengaruhi impedans dengan usaha yang lebih sedikit.
Asas Carta Smith
Seperti yang disebutkan dalam pendahuluan, Smith Chart menunjukkan pekali pantulan kompleks, dalam bentuk polar, untuk impedans beban tertentu. Kembali ke kelas elektrik asas, anda akan ingat bahawa impedans adalah jumlah rintangan dan reaktansi dan dengan demikian, lebih kerap daripada tidak, nombor kompleks, akibatnya, pekali pantulan juga merupakan nombor kompleks, kerana ditentukan sepenuhnya oleh impedans ZL dan "rujukan" impedans Z0.
Berdasarkan ini, pekali pantulan dapat diperoleh dengan persamaan;
Di mana Zo adalah impedans pemancar (atau apa sahaja yang menyampaikan daya ke antena) sementara ZL adalah impedans beban.
Oleh itu, Smith Chart pada dasarnya adalah kaedah grafik untuk menunjukkan impedans antena sebagai fungsi frekuensi, baik sebagai titik tunggal atau julat titik.
Komponen Carta Smith
Carta smith biasa menakutkan untuk dilihat dengan garis yang ada di sana-sini tetapi menjadi lebih mudah untuk menghargainya setelah anda memahami apa yang ditunjukkan oleh setiap baris.
Carta Impedans Smith
Impedance Smith Chart mengandungi dua elemen utama iaitu dua lingkaran / busur yang menentukan bentuk dan data yang diwakili oleh Smith Chart. Lingkaran ini dikenali sebagai;
- Bulatan-bulatan R yang berterusan
- Bulatan X Pemalar
1. Bulatan-bulatan R yang berterusan
Kumpulan garis pertama yang disebut sebagai garis Ketahanan Tetap membentuk bulatan, semua bersinggungan antara satu sama lain di sebelah kanan diameter mendatar. Lingkaran R yang tetap pada dasarnya adalah apa yang anda dapat apabila bahagian Rintangan Impedansi dipegang tetap, sedangkan nilai X berbeza-beza. Oleh itu, semua titik pada bulatan Constant R tertentu mewakili nilai rintangan yang sama (Fixed Resistance). Nilai rintangan yang diwakili oleh setiap Lingkaran Konstanta R ditandai pada garis mendatar, pada titik di mana bulatan itu bersilang dengannya. Biasanya diberikan oleh diameter bulatan.
Sebagai contoh, pertimbangkan impedans dinormalisasi, ZL = R + iX, Jika R sama dengan satu dan X sama dengan nombor nyata sehingga, ZL = 1 + i0, ZL = 1 + i3, dan ZL = 1 + i4, plot impedans pada carta smith akan kelihatan seperti gambar di bawah.
Memplotkan beberapa Bulatan R tetap memberikan imej yang serupa dengan gambar di bawah.
Ini akan memberi anda idea bagaimana lingkaran raksasa dalam carta smith dihasilkan. Lingkaran Pemalar Innermost dan Outermost, mewakili sempadan carta smith. Lingkaran Paling Dalam (hitam) disebut sebagai rintangan tak terhingga, sedangkan bulatan terluar disebut sebagai rintangan sifar.
2. Bulatan X Yang Tetap
Lingkaran Konstanta X lebih berbentuk lengkok daripada bulatan dan semuanya bersinggungan antara satu sama lain di sebelah kanan melintang dengan diameter mendatar Mereka dihasilkan apabila impedans mempunyai reaktansi tetap tetapi nilai rintangan yang berbeza-beza.
Garis di bahagian atas mewakili reaktansi positif sementara garis di separuh bawah mewakili reaktansi negatif.
Sebagai contoh, mari kita pertimbangkan lengkung yang ditakrifkan oleh ZL = R + iY, jika Y = 1 dan dipegang tetap sementara R mewakili nombor nyata, bervariasi dari 0 hingga tak terhingga diplotkan (garis biru) pada Lingkaran Konstanta R yang dihasilkan di atas, plot yang serupa dengan gambar di bawah ini diperoleh.
Menyusun pelbagai nilai ZL untuk kedua-dua lengkung, kami mendapat carta smith yang serupa dengan yang terdapat dalam gambar di bawah.
Oleh itu, Carta Smith yang lengkap diperoleh apabila kedua-dua bulatan yang dijelaskan di atas ditumpangkan satu sama lain.
Carta Kemasukan Smith
Bagi Admittance Smith Charts, kebalikannya adalah keadaannya. Penerimaan relatif terhadap impedans diberikan oleh persamaan 1 di atas seperti itu, penerimaan terdiri dari Kelakuan dan penerimaan yang bermaksud dalam kes carta kemasukan masuk, dan bukannya mempunyai Lingkaran Perlawanan Konstan, kita mempunyai Lingkaran Kelakuan Konstan dan bukannya mempunyai Constant regangan bulatan, kita mempunyai Constant Succeptance bulatan.
Ambil perhatian bahawa Carta Smith masuk masih akan menunjukkan pekali pantulan tetapi arah dan lokasi grafik akan berlawanan dengan carta Impedance smith seperti yang ditubuhkan secara matematik dalam persamaan di bawah
…… (3)Untuk menjelaskannya dengan lebih baik, mari kita pertimbangkan kemasukan normal Yl = G + i * SG = 4 (Tetap) dan S adalah nombor nyata. Menciptakan plot kekonduksian malar bagi smith menggunakan persamaan 3 di atas untuk mendapatkan pekali pantulan dan merancang untuk nilai S yang berbeza, kita mendapat carta smith yang ditunjukkan di bawah.
Perkara yang sama berlaku untuk Keluk Sukatan Tetap Sekiranya pemboleh ubah S = 4 (Constant) dan G adalah nombor nyata, plot lengkung susunan Constant (merah) yang dilekatkan pada lengkung Constant Conductance akan kelihatan seperti gambar di bawah.
Oleh itu, Carta Penerimaan Smith akan menjadi kebalikan dari carta Impedance smith.
Carta Smith juga mempunyai skala lilitan dalam panjang gelombang dan darjah. Skala panjang gelombang digunakan dalam masalah komponen yang diedarkan dan mewakili jarak yang diukur di sepanjang talian penghantaran yang dihubungkan antara penjana atau sumber dan beban ke titik yang dipertimbangkan. Skala darjah mewakili sudut pekali pantulan voltan pada ketika itu.
Aplikasi Smith Charts
Carta Smith menemui aplikasi di semua bidang Kejuruteraan RF. Beberapa aplikasi yang paling popular merangkumi;
- Pengiraan Impedans pada mana-mana talian penghantaran, pada beban apa pun.
- Pengiraan kemasukan di mana-mana saluran penghantaran, pada beban apa pun.
- Pengiraan panjang sekeping saluran transmisi litar pintas untuk memberikan reaktansi kapasitif atau induktif yang diperlukan.
- Pemadanan Impedans.
- Menentukan VSWR antara lain.
Cara menggunakan Carta Smith untuk pencocokan Impedansi
Menggunakan carta Smith dan menafsirkan hasil yang diperoleh darinya memerlukan pemahaman yang baik mengenai teori litar AC dan saluran transmisi, yang keduanya merupakan syarat semula jadi untuk kejuruteraan RF. Sebagai contoh bagaimana carta smith digunakan, kita akan melihat salah satu kes penggunaannya yang paling popular iaitu padanan impedans untuk antena dan saluran penghantaran.
Dalam menyelesaikan masalah seputar pemadanan, carta smith digunakan untuk menentukan nilai komponen (kapasitor atau induktor) yang akan digunakan untuk memastikan garis dipadankan dengan sempurna, iaitu memastikan pekali pantulan adalah sifar.
Sebagai contoh, Mari kita anggap impedansi Z = 0,5 - 0,6j. Tugas pertama yang perlu dilakukan adalah mencari lingkaran rintangan berterusan 0.5 pada carta smith. Oleh kerana impedans mempunyai nilai kompleks negatif, menyiratkan impedans kapasitif, anda perlu bergerak berlawanan arah jarum jam sepanjang bulatan rintangan 0,5 untuk mencari titik di mana ia mencapai arka reaktansi -0,6 (jika itu adalah nilai kompleks positif, akan mewakili induktor dan anda akan bergerak mengikut arah jam). Ini kemudian memberi idea mengenai nilai komponen yang akan digunakan untuk memadankan beban dengan garis.
Penskalaan normal membolehkan carta Smith digunakan untuk masalah yang melibatkan ciri atau impedans sistem, yang diwakili oleh titik tengah carta. Untuk carta Impedance smith, impedans normalisasi yang paling biasa digunakan ialah 50 ohm dan ia membuka grafik sehingga menjadikan jejak impedans lebih mudah. Sebaik sahaja jawapan diperoleh melalui konstruksi grafik yang dijelaskan di atas, adalah mudah untuk menukar antara impedans dinormalisasi (atau kemasukan dinormalisasi) dan nilai tidak normal yang sesuai dengan mengalikan dengan sifat impedans (kemasukan). Pekali pantulan boleh dibaca terus dari carta kerana ia adalah parameter tanpa unit.
Juga, nilai impedansi dan kemasukan berubah dengan kekerapan dan kerumitan masalah yang melibatkan mereka meningkat dengan kekerapan. Carta Smith bagaimanapun dapat digunakan untuk menyelesaikan masalah ini, satu frekuensi pada satu masa atau lebih dari banyak frekuensi.
Semasa menyelesaikan masalah secara manual dengan satu frekuensi pada satu masa, hasilnya biasanya ditunjukkan oleh titik pada carta. Walaupun kadangkala ini “cukup” untuk aplikasi lebar jalur yang sempit, biasanya pendekatan yang sukar untuk aplikasi dengan Lebar Lebar yang melibatkan beberapa frekuensi. Oleh kerana itu, smith Chart diterapkan pada pelbagai frekuensi dan hasilnya ditunjukkan sebagai Locus (menghubungkan beberapa titik) dan bukannya satu titik, dengan syarat frekuensi dekat.
Titik titik ini yang merangkumi pelbagai frekuensi pada carta smith boleh digunakan untuk menggambarkan secara visual:
- Seberapa kapasitif atau induktif Beban berada di julat frekuensi yang diperiksa
- Betapa sukarnya pemadanan pada pelbagai frekuensi
- Seberapa sesuai komponen tertentu.
Ketepatan carta Smith dikurangkan untuk masalah yang melibatkan lokus impedansi atau kemasukan yang besar, walaupun penskalaan dapat diperbesar untuk setiap kawasan untuk mengakomodasi ini.
Carta Smith juga boleh digunakan untuk masalah pemadanan elemen dan analisis.